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Abstract
We sought to establish norms and correlates for the Musical Ear Test (MET), an objective test of musical ability. A large sample
of undergraduates at a Canadian university (N > 500) took the 20-min test, which provided a Total score as well as separate scores
for its Melody and Rhythm subtests. On each trial, listeners judged whether standard and comparison auditory sequences were
the same or different. Norms were derived as percentiles, Z-scores, and T-scores. The distribution of scores was approximately
normal without floor or ceiling effects. There were no gender differences on either subtest or the total score. As expected, scores
on both subtests were correlated with performance on a test of immediate recall for nonmusical auditory stimuli (Digit Span
Forward). Moreover, as duration of music training increased, so did performance on both subtests, but starting lessons at a
younger age was not predictive of better musical abilities. Listeners who spoke a tone language exhibited enhanced performance
on the Melody subtest but not on the Rhythm subtest. The MET appears to have adequate psychometric characteristics that make
it suitable for researchers who seek to measure musical abilities objectively.
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Over the past couple of decades, it has become well
established that musical ability is correlated with many musi-
cal and nonmusical abilities (e.g., Bidelman, Hutka, &
Moreno, 2013; Piro & Oritz, 2009; Schellenberg, 2006), as
well as with functional and structural differences in the brain
(for review see Herholz & Zatorre, 2012). Although the roles
of nature and nurture in determining musical ability and who
takes music lessons remain in doubt (for reviews see
Schellenberg, 2020; Swaminathan & Schellenberg, 2019), ac-
curate and objective measurement of musical ability is essen-
tial for clarifying these issues. In the present investigation, we

administered a measure of musical ability (or musical compe-
tence) to a large sample of Canadian undergraduates. Our
goals were to develop norms that could be used for
interpreting performance levels in future research, and to doc-
ument other individual differences that vary in tandem with
musical ability.

In principle, individual differences in musical ability
among participants with no music training must stem from
differences in predispositions for musical ability, or musical
aptitude (natural musical ability), assuming that all other en-
vironmental factors are equal. It is not surprising, then, that the
history of musical-aptitude testing has been influenced by
changes over time in scholars’ attitude toward the concepts
of aptitude and talent, and toward nativism more generally. In
the early 1900s, individual differences in aptitude were as-
sumed to be real and the first modern tests of aptitude were
developed. Later in the 20th century, however, the notion of
talent was questioned (Ericsson, Rampe, & Tesch-Römer,
1993; Howe, Davidson, & Sloboda, 1998), such that individ-
ual differences in musical achievement were considered to be
the consequence of practice and other environmental factors
such as parental support and encouragement. Although this
view was consistent with the dominance of behaviorism in
experimental psychology in the early 20th century (Graham,
2019; Skinner, 1976), it lingered long after the birth of
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cognitive science and the so-called cognitive revolution
(Thagard, 2019). By the early 21st century, however, results
from studies of behavioral genetics implicated a role for genes
in virtually every measurable human characteristic (DiLalla,
2017), such that there was a resurgence of interest in individ-
ual differences in musical aptitude, and in measuring these
differences accurately.

As noted, before this time many scholars considered musi-
cal talent and aptitude to be something of a myth, or at the very
least unimportant theoretically, such that musical accomplish-
ments were attributed primarily to deliberate practice
(Ericsson, 2006; Ericsson et al., 1993), a view that is now
considered to be non-defensible (Hambrick, Macnamara,
Campitelli, Ullén, & Mosing, 2016; Ullén, Hambrick, &
Mosing, 2016). Indeed, approximately 10,000 hours of prac-
tice were considered to be the principal determinant of notable
accomplishment in music and other domains, which almost
anyone could achieve with the requisite amount of time and
effort. This perspective became part of folk wisdom, such that
a joke of unknown origin (Question: How do you get to
Carnegie Hall? Answer: Practice) is mentioned on the
Carnegie Hall website (https://www.carnegiehall.org/Blog/
2016/04/The-Joke).

As it turns out, the association between practice and
achievement remains valid, but the link is weaker than once
thought, for music as well as for other domains such as sports,
games, education, and professions (Macnamara, Hambrick, &
Oswald, 2014; Macnamara, Moreau, & Hambrick, 2016;
Meinz & Hambrick, 2010). Moreover, in the case of musical
achievement, twin studies demonstrate that practice does not
influence everyone equally. Rather, practice has a stronger
effect for those born with the genetic propensities for musi-
cianship (Hambrick & Tucker-Drob, 2015; Mosing, Madison,
Pedersen, & Ullén, 2016). Twin studies further document that
genetic factors play a role in determining a musician’s choice
of musical genre and instrument (Mosing &Ullén, 2018), and,
most crucially, amount of practice (Butkovic, Ullén, &
Mosing, 2015; Mosing, Madison, Pedersen, Kuja-Halkola,
& Ullén, 2014). In other words, the sine qua non of an envi-
ronmental contribution to musical accomplishment is actually
a gene–environment interaction (Hambrick & Tucker-Drob,
2015).

One of the first tests of musical aptitude was created by
Seashore (1919; Seashore, Saetveit, & Lewis 1960). The goal
of Seashore’s test and others that followed was to determine
whether an individual—typically a child—was a suitable can-
didate for music training. Perhaps the most widely used test in
North America was Gordon’s Musical Aptitude Profile
(Gordon, 1965), although tests by Wing (1962) and Bentley
(1966) were common in the UK. The various tests all had at
least two subtests, one measuring pitch (melody) perception
and another measuring temporal (rhythm) perception. The
tests of Seashore and Gordon actually had six and seven

subtests, respectively, which included measures of other mu-
sical dimensions such as the perception of loudness and meter.
Gordon subsequently simplified his approach in hisMeasures
of Music Audiation, which were available in Primary (Grades
K-3, Gordon, 1979), Intermediate (Gordon, 1982, Grades 1–
6), and Advanced (Grades 7–Adult, Gordon, 1989) versions.
Each of the three versions provided separate scores for melody
and rhythm. Audiationwas a term coined byGordon (1979) to
describe the process of retaining and comparing two musical
sequences—a standard followed by a comparison—presented
in succession. As such, audiation relies on short-termmemory
for musical stimuli.

Since 2010, several new measures of musical expertise
were developed, including the Musical Ear Test1 (MET,
Wallentin, Nielsen, Friis-Olivarius, Vuust, & Vuust, 2010a),
the Profile of Music Perception Skills (PROMS, Law &
Zentner, 2012), the Swedish Musical Discrimination Test
(SMDT, Ullén, Mosing, Holm, Eriksson, & Madison, 2014),
the Harvard Beat Assessment Test (H-BAT, Fujii & Schlaug,
2013), and the Goldsmiths Musical Sophistication Index
(Gold-MSI, Müllensiefen, Gingras, Musil, & Stewart, 2014).
Because musical ability is now accepted to be a consequence
of both genetic and environmental influences, the term
aptitude has fallen out of use in favor of more neutral terms
such as ability or competence. One notable exception is the
Montreal Battery for the Evaluation of Amusia (MBEA,
Peretz, Champod, & Hyde, 2003), which has the goal of di-
agnosing congenital amusia—musical abilities that are con-
genitally and unusually low.

In our laboratory (Swaminathan & Schellenberg, 2017,
2018; Swaminathan, Schellenberg, & Khalil, 2017;
Swaminathan, Schellenberg, & Venkatesan, 2018), we opted
to use the MET because it is an objective measure of musical
ability, freely available, and computer-administered but not
self-paced, such that testing time is exactly the same (20
min) for each participant. Like the Gordon (1965, 1979,
1982, 1989) tests, the MET provides separate scores for its
Melody and Rhythm subtests, which allowed us to test hy-
potheses about specific links between rhythm perception and
language ability (Swaminathan et al., 2018; Swaminathan &
Schellenberg, 2017, 2019), for example, and between melody
perception and the ability to speak a tone language
(Swaminathan et al., 2018). The MET has additional advan-
tages compared to other recent tests. For example, the original
PROMS is much longer in duration (1 h); the SMDT (Melody
subtest) requires participants to identify a specific note that is
changed on different trials, a task that seems needlessly diffi-
cult and molecular for participants with no music training; the
H-Bat tests only rhythm perception and uses an adaptive pro-
cedure, which means that test duration varies across partici-
pants; the Gold-MSI relies on self-reports; and the MBEA is

1 Freely available from Peter Vuust: petervuust@gmail.com

2008 Behav Res (2021) 53:2007–2024

https://www.carnegiehall.org/Blog/2016/04/The-Joke
https://www.carnegiehall.org/Blog/2016/04/The-Joke


designed to detect abnormally poor musical abilities, such that
most individuals perform at close-to-ceiling levels.

In the present report, we analyzed data from a large sample
of participants who took theMET previously in our laboratory
as part of a series of studies that examined associations be-
tween musical expertise and nonmusical abilit ies
(Swaminathan et al., 2017, 2018; Swaminathan &
Schellenberg, 2017, 2018). The large number of participants
aggregated across samples allowed us to derive norms, such
that raw scores can be interpreted meaningfully in the future,
at least in relation to our sample of undergraduates attending a
Canadian university. For example, a raw Total score of 81 out
of 104 is meaningless on its own, but when converted to a
percentile (82nd), Z-score (114), or T-score (60), this score
represents relatively good performance that is approximately
one SD above the mean.

We also sought to identify individual-difference variables
that predict performance on the MET. The scale’s original
authors (Wallentin et al., 2010a; Hansen, Wallentin, &
Vuust, 2013) reported a positive correlation with Digit Span
Forward, a widely used test that measures the capacity of
auditory short-term memory (Conway et al., 2005). This as-
sociation is not surprising because the MET requires same-
different judgments on each trial after participants hear a stan-
dard and a comparison auditory sequence. We included the
entire Digit Span test (Forward and Backward), however, so
that we would have an additional, more challenging measure
of immediate-memory capacity, one that required participants
to re-order the to-be-remembered items. Digit Span Backward
is typically considered to measure the capacity of working
rather than short-term memory (Conway et al., 2005). Based
on the structure of the MET and previous findings, we expect-
ed that Digit Span Forward would be a particularly good pre-
dictor of MET scores. We also included a version of Raven’s
Advanced ProgressiveMatrices (Bors & Stokes, 1998; Raven,
1965) as a proxy measure of individual differences in general
cognitive but non-verbal (and non-auditory) ability. As with
any specific measure of a perceptual or cognitive ability, one
would expect musical ability to have a small but reliable cor-
relation with general cognitive ability (Carroll, 1993).

The construct validity of tests that are designed to measure
musical ability objectively cannot be assessed directly, be-
cause there is no consensus about what musical ability is, what
it involves, and how it should be measured. Measures of per-
formance ability or success are inadequate because some in-
dividuals have high levels of musical ability but no opportu-
nity to learn how to sing or to play an instrument (Law &
Zentner, 2012). Accordingly, available tests tend to focus on
perceptual and cognitive abilities. Validity is documented by
positive associations with (1) performance on other tests of
musical ability (e.g., Law&Zentner, 2012; Peretz et al., 2003)
and (2) music training and/or musicianship (Fujii & Schlaug,
2013; Law & Zentner, 2012; Ullén et al., 2014; Wallentin

et al., 2010a). The latter association assumes that, on average,
performance of a test of musical ability should be better
among individuals with music training, whether musical abil-
ity promotes the likelihood of music training, music training
improves musical abilities, the association is bi-directional, or
an unidentified variable is driving the association. In the orig-
inal report, performance on the MET varied with the partici-
pant’s status as a musician (professional > amateurs > non-
musician), and it was associated positively with amount of
practice (Wallentin et al., 2010a).

In the present sample of Canadian university students, very
few were professional musicians. Consequently, we measured
duration of music lessons taught privately and in school. In
previous studies (Swaminathan & Schellenberg, 2017, 2018),
duration-of-training was positively associated with perfor-
mance on the MET, although this association was stronger
for the Melody than for the Rhythm subtest (Swaminathan
et al., 2017, 2018). The large sample included here allowed
us to test the reliability of these earlier results, and to test
specifically whether music training is a better predictor of
performance on one of two subtests.

Other goals were to test theories of associations between
musical ability and onset of training, and between musical
ability and language background. Onset of training is impor-
tant because early childhood may represent a sensitive period
during which music training has a more pronounced influence
on behavior and brain structure and function (Baer et al.,
2015; Bailey & Penhune, 2010, 2012, 2013; Bailey, Zatorre,
& Penhune, 2014; Penhune, 2011; Steele, Bailey, Zatorre, &
Penhune, 2013; Steele & Zatorre, 2018; Vaquero, Rousseau,
Vozian, Klein, & Penhune, 2020; Watanabe, Savion-
Lemieux, & Penhune, 2007), in line with principles of plas-
ticity (Penhune, 2019, 2020; Penhune & de Villers-Sidani,
2014). Another possibility, however, is that certain musical
predispositions promote musical participation at a young
age, as the genetic studies imply (Mosing et al., 2014).
Either way, our large sample provided us with a powerful test
of whether musical ability tends to be better among individ-
uals who start music training early in life. Nevertheless, if such
an association emerged, it would not inform the issue of causal
direction.

In previous studies (Swaminathan et al., 2018; Zhang, Xie,
Li, Shu, & Zhang, 2020), participants who spoke a tone lan-
guage outperformed other participants on the Melody subtest
but not on the Rhythm subtest of the MET. This finding is
consistent with others showing that tone-language use is asso-
ciated with altered pitch-processing mechanisms in the brain
(Bidelman & Chung, 2015; Bidelman & Lee, 2015), and that
tone-language speakers have enhanced discrimination, mem-
ory, and processing speed for pitch (Bidelman et al., 2013;
Hutka, Bidelman, & Moreno, 2015; Stevens, Keller, &
Tyler, 2013). More generally, these results are in line with
the theoretical proposal that the neural encoding of pitch
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works similarly for speech and music, such that experience in
one domain (e.g., speaking a tone language, music training)
facilitates pitch perception in the other domain (Bidelman,
Gandour, & Krishnan, 2011; Wong, Skoe, Russo, Dees, &
Kraus, 2007). In the present study, we expected a performance
advantage on the Melody subtest among participants who
spoke a tone language.

Finally, because the individual-difference variables that we
measured would be collinear to some extent, we used multiple
regression to determine which ones made independent contri-
butions in predicting musical ability when nonmusical abili-
ties (as measured by Digit Span Backward and Raven’s test)
were held constant. We expected to find positive partial asso-
ciations between performance on theMET andmusic training,
between MET scores and scores on Digit Span Forward, and
between performance on the Melody subtest and individuals
who spoke a tonal language. For onset of music training,
however, we were agnostic because onset of training is typi-
cally confounded with duration of training. In any event, our
large sample afforded ample power to determine which vari-
ables were independent predictors of musical ability.

Method

The study protocol was approved by the Research Ethics
Board at the University of Toronto.

Participants

The participants were 523 undergraduates (350 women, 168
men, five unreported).Most were registered in an introductory
psychology class at a mid-size, suburban campus in Canada
and received partial course credit for their participation. The
others received token remuneration. The mean age was 19
years (SD = 24 months) but most (n = 391) were between
17 and 19. Participants were originally recruited and tested
for studies of music training and nonmusical abilities, includ-
ing 151 tested by Swaminathan and Schellenberg (2017), 48
from Swaminathan et al. (2017), 165 from Swaminathan et al.
(2018), and 53 from Swaminathan and Schellenberg (2018).
Others included in the present sample were tested in similar
but unpublished studies (n = 67), or excluded from the earlier
samples because of failure to meet inclusion criteria for that
specific study (e.g., complete data, language background, n =
39).

Most participants had no history of private music lessons (n
= 369) but some history of school music lessons (n = 280). On
average, they had 2.6 years of private music lessons (SD =
5.4) and 2.5 years of music lessons received in school (SD =
3.8). The average age at which music training began was 10.5
years (SD = 5.5). Most participants were native speakers of
English (n = 319), but a sizeable portion (n = 197) had a native

language other than English (language data missing for seven
participants). Approximately 37% of the nonnative speakers
(n = 73) first learned to speak a tone language. Other partici-
pants spoke a tone language as a second language or as simul-
taneous bilinguals, such that the sample comprised 107 tone-
language speakers. The broad heterogeneity in language back-
ground was commensurate with the multicultural make-up of
the local community and the student population.

Measures and procedure

Each participant took the MET individually while sitting in
front of a computer in a sound-attenuating booth wearing
high-quality headphones. The Melody subtest was adminis-
tered before the Rhythm subtest. Both subtests had 52 trials
(half same, half different), with sequences presented at 100
beats per minute (bpm). For both subtests, feedback was pro-
vided on two initial practice trials but not on the 52 test trials
that followed. Participants recorded their responses on an an-
swer sheet with a pen (there was no visual display on the
monitor). On each trial, their task was to determine whether
the two auditory sequences were the same, and to mark either
YES or NO. Scores were calculated as the number of correct
responses.

The same metrical structure (4/4 time) and underlying beat
rate, 600 ms per beat, was maintained for both subtests. This
tempo, which corresponds to 100 beats per minute (bpm), is
slightly slower than the standard dance tempo of 120 bpm
(each beat = 500 ms). Throughout both subtests, a metronome
sound at the underlying beat level was played at a lower am-
plitude than the stimuli.

The trial structure was the same for both Melody and
Rhythm subtests. For both subtests, the downbeat of each
sequence was always 4800ms (eight beats) after the downbeat
of the previous sequence. All Melody sequences were five
beats long, and Rhythm sequences were either four, five, or
six beats long. A male voice announced the trial number
1200 ms prior to the first downbeat of each trial.

For the Melody subtest, the first and last sounds of each
sequence always aligned with the first and last downbeats of
the sequence. For the Rhythm subtest, the first sound of a
sequence could align with either the first downbeat or a sub-
division of the downbeat (e.g., after a half-beat rest).
Similarly, the last sound could occur on the last downbeat, a
subdivision of that beat, or a subdivision of the penultimate
beat. Thus, although the time window between the first down-
beat of consecutive sequences was always the same, the
amount of time between onset of the first sound of a sequence
and the last sound of the previous sequence on the Rhythm
subtest varied slightly (i.e., from 4200–5250ms between trials
and from 1950–2700 ms within a trial).

Sequences in the Melody subtest comprised three to eight
grand-piano tones, all of which fell within the range from A3
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(3 semitones below middle C) to E5 (16 semitones above
middle C). Tones were half-notes (1200 ms), quarter-notes
(600 ms), and eighth-notes (300 ms). On all trials, standard
and comparison sequences had the same number of tones. On
different trials (26 of 52), two or three adjacent tones in the
standard were reversed in the comparison sequence, or 1–2
tons of the comparison sequence were displaced in pitch rel-
ative to the standard, usually by 1–2 semitones (there was one
instance of a 5-semitone change). For half of different trials,
the manipulation changed the contour (i.e., the pattern of up-
ward and downward changes in pitch). In the other half, the
contour stayed the same but the intervals (pitch distances)
before and after displaced tones were altered. The melodies
were in major mode, minor mode, or atonal (i.e., containing
non-diatonic tones) on 20, 7, and 25 trials, respectively.
Differences among trials in terms of mode and contour con-
tributed to task difficulty and were distributed randomly
throughout the Melody subtest. Examples are illustrated with
musical notation in Fig. 1. The figure provides two examples
of same trials, one of which was easy, the other more difficult,
and two different trials, one easy and one difficult.

On the Rhythm subtest, sequences comprised 4 to 11
wood-block sounds. All wood-block sounds were identical
in terms of pitch, but onset-to-onset durations were more var-
iable than in the Melody subtest (i.e., 150, 200, 300, 400, 450,
600, 900, 1200, and 1800 ms). On different trials, the com-
parison sequence differed from the standard by presenting one
or two sounds early or late, presenting one sound early and
one sound late, swapping adjacent durations in one or two
instances, shifting two to four adjacent sounds ahead or be-
hind in time in an identical manner, or adding an additional
sound. When the first or last sound was displaced in time, the
comparison sequence had a different onset-to-onset duration
between the first and last sounds compared to that of the stan-
dard. Examples are provided in Fig. 1, with two same trials
(one easy, one difficult) and two different trials (one easy, one
difficult).

The testing context was identical for all participants, who
also completed a questionnaire that asked for information
about music training and language background. A sizeable
majority also provided information about socio-economic sta-
tus (SES), specifically mother’s (n = 440) and father’s (n =
442) highest level of education, both measured on 8-point
scales (1 = did not finish high school, 8 = graduate degree),
and annual family income (n = 431), measured on a 9-point
scale (1 = $25,000 or less, 9 = $200,000 or more). A principal
component (hereafter, SES) was extracted from the three mea-
sures for use in the statistical analyses in order to reduce col-
linearity and measurement-specific error. It accounted for
56.9% of the variance in the original items. Mother’s educa-
tion and father’s education loaded highly onto the latent var-
iable (rs > .8); family income had a smaller loading (r = .588).
SES scores for participants with missing data were formed by

standardizing and averaging the income and education data
that were available, such that SES scores were available for
448 participants (86% of the sample).

Questions about language background required partici-
pants to identify their native (first) language, and all of the
languages they spoke or understood. For each language, they
indicated their proficiency on seven 7-point scales (re: speak-
ing, reading, writing, comprehension, vocabulary, fluency,
and accent). As noted, most participants completed a test of
nonmusical abilities (e.g., speech perception, reading, IQ), the
results of which were reported previously (Swaminathan et al.,
2017, 2018; Swaminathan & Schellenberg, 2017). A majority
of participants (n = 381) also took the Digit Span test and a
short version of Raven’s Advanced Progressive Matrices
(Bors & Stokes, 1998). The Digit Span test provided separate
scores for forward and backward span, whereas the Raven’s
test provided a measure of general but nonverbal cognitive
ability. Other participants did not take the Digit Span test,
but instead took the complete Raven’s test (n = 51) or the
short version (n = 24). To equate the short and complete ver-
sions of the Raven’s test in the statistical analyses, scores were
standardized separately for both versions so that they had the
same mean and standard deviation (0 and 1, respectively).

Results

Preliminary analysis examined the internal reliability of the
MET subtests and Total scores. We calculated Cronbach’s
alphas and split-half correlations (Spearman–Brown formula)
for the whole sample as well as for individuals with no music
training and individuals with at least 10 years of training. The
results are reported in Table 1. For the whole sample, alphas
were lower than those reported by the test developers
(Melody: .82, Rhythm: .69, Total: .85; Wallentin, Nielsen,
Friis-Olivarius, Vuust, & Vuust, 2010b), which might be ex-
pected from a more heterogeneous sample. In general, the
entire scale had better internal reliability than the subtests.
Alphas were lower for the Rhythm scores than for Melody
scores, but split-half correlations were similar. The statistics
did not provide evidence that the MET was more reliable for
highly trained individuals. Although alphas were higher for
these participants than for untrained participants, split-half
reliabilities were similar for both groups for the Rhythm sub-
test, but higher for the untrained group for the Melody subtest
and Total scores.

The analyses that follow include standard frequentist sta-
tistics, which evaluate the probability of the null hypothesis
given the observed data. They also include, whenever possi-
ble, Bayesian statistics calculated with JASP 0.10.2 (JASP
Team, 2019), using default priors. Bayesian statistics compare
the likelihood (or the odds) of the observed data under the
alternative compared to the null hypothesis. JASP software
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includes Bayesian counterparts to paired t tests, independent-
samples t tests, analysis of variance (ANOVA), analysis of
covariance (ANCOVA), repeated-measures and mixed-
design ANOVAs, as well as correlation and regression, in-
cluding multiple regression. All tests provide Bayes factors
(i.e., BF10, reported here with three-digit accuracy). When a
Bayes factor is equal to 1, the observed data are equally likely
under the alternative and null hypotheses. When BF10 > 1, the
observed data are more likely under the alternative hypothesis.
When BF10 < 1, the observed data are more likely under the
null hypothesis. According to conventional rules of thumb
(Jarosz & Wiley, 2014; Jeffreys, 1961), weak or anecdotal

evidence for the alternative hypothesis is provided by values
between 1 and 3, with values of 3–10, 10–30, 30–100, and
over 100 providing substantial, strong, very strong, and deci-
sive evidence, respectively. Conversely, values of 1.0–.33,
.33–.10, .10–.03, .03–.01, and less than .01 provide anecdotal,
substantial, strong, very strong, and decisive evidence in favor
of the null hypothesis. Thus, unlike frequentist statistics,
Bayesian analyses can provide evidence for the null
hypothesis.

Descriptive statistics for the MET are provided in Table 2.
Distributions are illustrated in Fig. 2. In Tables 9, 10, and 11,
respectively, of the Appendix, raw scores are converted to

Fig. 1 Examples of trials in musical notation from the Melody (upper) and Rhythm (lower) subtests of the MET. For both subtests, two same trials and
two different trials are illustrated, the first being easy and the second more difficult
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norms for the Melody, Rhythm, and Total measures. Norms
include percentiles, Z scores (M = 100, SD = 15), and T scores
(M = 50, SD = 10). Table 2 and Fig. 2 confirm that there were
no ceiling effects, with no perfect scores and mean levels of
performance just under the mid-point between chance and per-
fect (Melody: 69.3%, Rhythm: 70.1%, Total: 69.7%). Only a
small percentage of participants performed below chance levels
on either subtest or the complete MET. Distributions departed
slightly from normality, ps ≤ .015 (Shapiro–Wilk tests), how-
ever, not because of skewness (i.e., the distributions were ap-
proximately symmetrical), but because of kurtosis.
Specifically, compared to a standard normal distribution, there
were relatively few observations in the middle or tails of the
curve, but an excess in the shoulders. In general, though, scores
were distributed suitably for parametric analyses.

We also observed that listeners had a bias to respond “yes”
(same), such that one-sample t tests confirmed that more than

50% (26/52) of responses were “yes” on the Melody subtest
(M = 32.94, SD = 5.01), t(522) = 31.65, p < .001, Cohen’s d =
1.38, BF10 > 100, and on the Rhythm subtest (M = 30.31, SD
= 4.78), t(522) = 20.59, p < .001, Cohen’s d = 0.90, BF10 >
100. In both instances, Bayesian analyses indicated that the
observed data provided decisive evidence for this response
bias. We expect that on difficult trials, participants often failed
to notice when the standard and comparison sequences dif-
fered. In any event, all but one of the analyses reported in the
present manuscript remained unchanged when hits
(responding yes when the sequences were the same) were
adjusted for false alarms (responding yes when the sequences
differed) by calculating d’ scores, which were almost perfectly
correlated with raw scores (rs = .97, .98, and .98, for Melody,
Rhythm, and Total scores, respectively, ps < .001, all BF10 >
100). The one exception was in the analysis of SES, noted
below.

Finally, a paired-samples t test found no evidence to sug-
gest that performance accuracy on the Melody and Rhythm
subtests differed, t(522) = 1.86, p = .063, Cohen’s d = .081,
with the Bayesian counterpart to the same test providing sub-
stantial evidence that the observed data were more likely un-
der the null hypothesis, BF10 = .273. Melody and Rhythm
scores were correlated, however (see Fig. 3), r = .489, N =
523, p < .001, as expected, with the observed data providing
decisive evidence in favor of an association, BF10 > 100.
Nevertheless, as shown in Fig. 3, the overlapping variance
was modest (23.9%), which meant that predictors of perfor-
mance on the Melody subtest could differ from those of per-
formance on the Rhythm subtest.

Demographics

The next set of analyses documented that MET Melody,
Rhythm, and Total scores were not associated strongly with
basic demographic variables including age, gender, and SES.
We used standard Pearson correlations for age and SES, and
point-biserial correlations for gender. Gender was coded as a
binary variable (0 = women, 1 = men). Effect sizes (rs), p-
values, and sample sizes are provided in Table 3. There were
no associations with age or gender, and Bayesian correlational
analyses confirmed that the observed data were at least eight
times more likely under the null hypothesis (no association)
than the alternative.

SES had very small positive correlations with MET
Melody, Rhythm, and Total scores, but when d’ scores were
used the association with Rhythm became non-significant, p >
.1. Because of our large sample, correlations with raw scores
were statistically significant even though the shared variance
was miniscule (max: 1.5%).Moreover, Bayesian analysis sug-
gested that evidence in favor of an association was anecdotal
at best. In any event, small correlations with SES are evident

Table 1 Reliability statistics, including Cronbach’s alpha and split-half
(odd-even) correlations (Spearman–Brown formula), for scores on the
MET

Melody Rhythm Total

Whole sample (N = 523)

Cronbach’s Alpha .73 .62 .78

Split-half correlation .71 .68 .78

No music training (n = 189)

Cronbach’s alpha .59 .56 .68

Split-half correlation .58 .63 .72

≥ 10 Years of training (n = 98)

Cronbach’s alpha .65 .64 .77

Split-half correlation .51 .64 .65

Table 2 Descriptive statistics for scores on the MET

Melody Rhythm Total

Whole sample (N = 523)

Mean 36.05 36.47 72.52

SD 5.36 4.94 8.89

Range 22–49 22–47 50–94

No Music Training (n = 189) N = 523)

Mean 34.15 35.56 69.71

SD 4.41 4.68 7.48

Range 24–47 24–46 50–88

≥ 10 years of training (n = 98)

Mean 40.00 38.74 78.74

SD 4.52 4.75 8.13

Range 30–49 25–47 57–94

Maximum scores were 52 for the melody and rhythm subtests (chance =
26), and 104 for the total score (chance = 52)
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for performance on many measures of cognitive ability
(grade-point average, IQ; Johnson, McGue, & Iacono, 2007).

Music training

Duration of training

Results from Pearson and Bayesian tests of correlations be-
tweenMET scores and music training are provided in Table 4.
Music training was coded in six different ways: any private
training (binary variable: 0 = no training, 1 = some training),
duration of private training, any school training (binary

variable: 0 = no training, 1 = some training), duration of
school training, the sum of years of private and school training
(M = 5.0, SD = 7.2), and the square-root transformation of the
sum (to reduce positive skew).

As expected, performance on the MET was correlated with
all measures of music training except in one instance: the
association between Rhythm scores and the binary variable
representing school lessons. Bayesian analyses confirmed that
the observed associations for all other measures of music
training were very strong or decisive. We also tested whether
correlations with music training differed in magnitude for
Melody scores compared to Rhythm scores, using the test

Stem and Leaf plots for MET Melody (Upper), Rhythm (Middle), and Total (Lower) scores 

Melody
2.  23
2.  4444555555
2.  666667777777777
2.  88888888888888999999999999999999
3.  000000000000000000000011111111111111111111111111111
3.  2222222222222222222222222233333333333333333333333333333333
3.  444444444444444444444444444444444444444555555555555555555555555555555555555555555555
3.  666666666666666666666666666666777777777777777777777777777777777
3.  888888888888888888888888888888888888889999999999999999999999999999999999
4.  00000000000000000000000000000001111111111111111111111
4.  2222222222222222222333333333333333333
4.  4444444444445555555555
4.  66666667777777
4.  888999999

Rhythm
2.  23
2.  44555
2.  666666677777777
2.  8888888889999999999999
3.  0000000000000000111111111111111111111111
3.  222222222222222222222222222223333333333333333333333333333333
3.  44444444444444444444444444444444444444444455555555555555555555555555555555555
3.  66666666666666666666666666666666666666666667777777777777777777777777777777
3.  888888888888888888888888888888888889999999999999999999999999999999999999999999
4.  000000000000000000000000000000000111111111111111111111111111
4.  222222222222222222222222222333333333333333333
4.  444444444444444444444555555555555555
4.  666666777

Total
5.  0011
5.  33
5.  4445555
5.  66666677777777
5.  88888889999
6.  0000000011111111
6.  2222222222222222333333333333333
6.  4444444444455555555555555555
6.  66666666666666666677777777777777777
6.  8888888888888888888888888889999999999999999999999999
7.  00000000000000000000000000011111111111111111111
7.  222222222222222222222222222333333333333333333
7.  44444444444444444444444455555555555555555
7.  6666666666666666777777777777
7.  888888888888888899999999999999999999999999
8.  0000000000111111111111111
8.  22222222222222222333333333333
8.  444444444444444444555555555
8.  6666667777777777777
8.  8888899
9.  00011
9.  22233
9.  444

Fig. 2 Stem and leaf plots forMETmelody (upper), Rhythm (middle), and Total (lower) scores.Note:Each leaf represents a single score, which is added
to the stem multiplied by 10. Thus, for Melody, there was one score of 22, one score of 23, four scores of 24, six scores of 25, and so on
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for comparison of correlations from dependent samples.2 The
samples were “dependent” because the same measure of mu-
sic training (e.g., duration of private lessons) was used to
calculate the correlation with Melody scores and the correla-
tion with Rhythm scores. As shown in Table 4, Melody scores
were better predicted than Rhythm scores for the three mea-
sures of music training that included private lessons.

Finally, we asked whether MET scores were better predict-
ed by private compared to school-based music training, again
using the test for comparison of correlations from dependent
samples. The results are provided in Table 5. For the binary
(some-or-none) variables of music training, private training
was a better predictor of MET scores than school-based train-
ing, and this difference was evident for Melody, Rhythm, and
Total scores. Associations with MET scores were similar,
however, for duration of lessons whether they were taught
privately or in school.

As in previous research (Swaminathan et al., 2018;
Swaminathan & Schellenberg, 2017, 2018), the aggregate
measure (square-root duration summed) maximized associa-
tions withMET scores for Rhythm scores and for Total scores,
at least in terms of absolute magnitude. ForMelody scores, the
association with the aggregate measure (r = .389) was virtu-
ally identical to the association with some private training (r =

.394). Subsequent analyses were restricted to the aggregate
measure (henceforth, music training).

Onset of training

The next set of analyses examined the possibility of associa-
tions between performance on the MET and the age at which
music training began. Thus, participants with no music train-
ing were excluded. According to Penhune (Penhune, 2011;
Steele et al., 2013; Watanabe et al., 2007), a sensitive period
for effects of music training on development extends to 7

Fig. 3 Scatter plot illustrating MET-rhythm scores (y-axis) as a function of MET-melody scores (x-axis)

Table 3 Correlations, p values, and Bayes factors (BF10) for
associations between MET scores and demographic variables

Melody Rhythm Total

Age r .019 .041 .034

p .664 .348 .433

BF10 .060 .085 .074

Gender r .057 – .009 .029

p .197 .835 .506

BF10 .126 .056 .069

SES r .115 .098 .123

p .015 .039 .009

BF10 1.120 .497 1.775

Note: Age: N = 523, Gender (0 = female, 1 = male): N = 518, SES: N =
448

2 All comparisons of correlations were conducted with Psychometrica, https://
www.psychometrica.de/correlation.html).
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years of age. We therefore compared participants who began
taking lessons by age 7 (n = 77) with those who started later in
life (n = 248).

Independent-samples t tests confirmed that the early
starters (M = 39.26, SD = 5.00) performed better than the
late starters (M = 36.37, SD = 5.53) on the Melody subtest,
t(323) = 4.09, p < .001, Cohen’s d = .534, and the Rhythm
subtest (early: M = 38.10, SD = 5.10; late: M = 36.68, SD
= 4.98), t(323) = 2.18 p =.030, Cohen’s d = .285. The early
starters (M = 77.36, SD = 8.61) also had higher Total
scores than the late starters (M = 73.05, SD = 9.23),
t(323) = 3.64, p < .001, Cohen’s d = .475. The Bayesian
counterpart to an independent-samples t test revealed that
the observed data provided decisive and very strong evi-
dence for an early-starter superiority for Melody, BF10 >
100, and Total, BF10 = 68.4, scores, respectively. For
Rhythm scores, by contrast, the effect was very weak,
BF10 = 1.35.

Early starters (M = 13.88, SD = 9.70) also had more music
training compared to late starters (M = 6.10, SD = 5.83),
t(323) = 8.98, p < .001, Cohen’s d = 1.172, as one might
expect, and the difference was decisive according to
Bayesian statistics, BF10 > 100. Thus, we then asked whether
the association between age of onset and musical competence
was independent of duration of training. We used analysis of
covariance (ANCOVA) with onset of training as the indepen-
dent variable and music training as the covariate. The advan-
tage for early starters disappeared for Melody scores, F(1,
322) = 1.51, p > .2, Rhythm scores, F < 1, and Total scores,
F < 1. The Bayesian ANCOVAs indicated that the observed
data provided substantial evidence for the null hypothesis (i.e.,
no effect for onset of training) for Rhythm, BF10 = .172, and
Total, BF10 = .227, scores, and weak evidence for Melody
scores, BF10 = .338.

In the next analysis, we correlated music training with
MET scores separately for early and late starters. The results

Table 4 Correlations, p values, and Bayes factors (BF10) for associations between MET scores and music training (N = 523). The rightmost column
provides comparisons between Melody and Rhythm

Melody Rhythm Total Melody vs. Rhythm

Any private lessons r .394 .183 .339 z 5.06

p < .001 < .001 < .001 p < .001

BF10 > 100 > 100 > 100

Duration-private lessons r .314 .172 .285 z 3.34

p < .001 < .001 < .001 p < .001

BF10 > 100 > 100 > 100

Any school lessons r .138 .069 .121 z 1.57

p .002 .117 .005 p .116

BF10 8.12 .186 2.59

Duration-school lessons r .222 .168 .227 z 1.25

p < .001 < .001 < .001 p .212

BF10 > 100 88.6 > 100

Duration summed r .357 .220 .337 z 3.30

p < .001 < .001 < .001 p < .001

BF10 > 100 > 100 > 100

Square-root duration summed r .389 .228 .361 z 3.88

p < .001 < .001 < .001 p < .001

BF10 > 100 > 100 > 100

Table 5 Comparisons of the magnitude of correlations between MET scores and private music training, andMET scores and school-based training (N
= 523)

Any lessons Duration of lessons

Private r School r z p Private r School r z p

Melody .394 .138 4.72 < .001 .314 .222 1.72 .086

Rhythm .183 .069 2.00 .046 .172 .168 0.07 .942

Total .339 .121 3.95 < .001 .285 .227 1.08 .280
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are provided in Table 6. Contrary to the plasticity perspective,
the correlations were significant and strong for late starters,
but non-existent for early starters, which raises the possibility
that age of onset might moderate the effect of music training.
We tested the interaction between music training and onset of
training with a general linear model that included both main
effects and the two-way interaction. The interaction between
music training and onset of training was significant for
Melody scores, F(1, 321) = 5.11, p = .025, η2 = .014, BF10
= 1.88, but not for Rhythm scores, F < 1, p > .5, η2 = .001,
BF10 = .240, and only marginal for Total scores, F(1, 321) =
2.83, p = .093, η2 = .008, BF10 = .658. In general, then, there
was only weak evidence that the magnitude of the association
was stronger for late than for early starters.

Finally, we considered only those participants with at least
10 years of music lessons (n = 95). Independent-samples t
tests revealed no group differences between early and late
starters for Melody scores, t(93) = 0.16, p = .877, Cohen’s d
= .032, BF10 = .218; Rhythm scores, t(93) = 0.39, p = .696,
Cohen’s d = .081, BF10 = .231; or Total scores, t(93) = 0.31, p
= .755, Cohen’s d = .064, BF10 = .225; and the Bayes factors
indicated that the observed data were substantially more likely
under the null than the alternative hypothesis in each instance.
We also considered only those participants with at least 10
years of private music lessons (n = 60). Again, there were
no group differences based on onset of training for Melody
scores, t(58) = 0.05, p = .960, Cohen’s d = .013, BF10 = .265;
Rhythm scores, t(58) = 0.35, p = .731, Cohen’s d = .090, BF10
= .278; or Total scores, t(58) = 0.22, p = .826, Cohen’s d =
.057, BF10 = .270; and Bayesian analysis provided substantial
evidence for the null hypothesis in each case.

The findings did not change when onset of training was
treated as a continuous variable.

General cognitive ability

The next set of analyses asked whether individual differences
in performance on the MET could be predicted by individual
differences in general cognitive ability as measured by Digit
Span Forward, Digit Span Backward, and Raven’s test. The
results are provided in Table 7. Pearson correlations ranged

between .2 and .3, and all were statistically significant and
considered decisive or very strong by Bayesian analyses, even
though they were modest in size. For all cognitive variables,
associations were similar for Melody and Rhythm. In short,
performance on the MET varied in tandem with performance
on nonmusical measures of cognitive ability.

Language background

The next set of analyses considered whether knowledge of a
tone language would predict performance on the Melody but
not on the Rhythm subtest, as it did with a subsample of our
participants (Swaminathan et al., 2018) and with participants
tested in a different laboratory (Zhang et al., 2020). We ini-
tially classified participants into three groups according to
their native (first) language: English, a non-tone language oth-
er than English, or a tone language. A mixed-design ANOVA
with subtest (Melody, Rhythm) as a repeated measure and
native language as a between-subjects variable confirmed that
native language interacted with subtest, F(2, 513) = 6.24, p =
.002, partial η2 = .024. Evidence for the interaction was sub-
stantial according to Bayesian statistics, BF10 = 8.31, which
compared the relative likelihood of the observed data with two
models: one with only the two main effects (subtest, native
language), and another with the two main effects plus the two-
way interaction.

The significant interaction was followed up with separate
one-way ANOVAs for the two MET subtests, with native
language as the independent variable. The three groups per-
formed similarly on the Rhythm subtest, F(2, 513) = 1.95, p =
.143, η2 = .008, with substantial evidence favoring the null
hypothesis, BF10 = .170. As expected, the groups performed
differently on the Melody subtest, F(2, 513) = 10.71, p < .001,
η2 = .040, with Tukey’s follow-up comparisons showing sig-
nificantly better performance for the tone-language group than
for the other two groups, ps ≤ .001, who did not differ, p > .1.
Although the overall effect size was not large, the Bayes factor
indicated that the observed data provided decisive evidence
for differences in Melody scores as a function of native lan-
guage, BF10 > 100.

As noted, many of our participants whose native language
was English (or another non-tone language) also spoke a tone
language with varying degrees of proficiency. In the next
analysis, we considered participants’ self-reports of proficien-
cy, from which we formed a continuous measure of tone-
language ability, ranging from 0 (no knowledge of a tone
language) to 49 (perfect fluency). This measure was correlated
positively and decisively with Melody, r = .215, N = 504, p <
.001, BF10 > 100, but not with Rhythm, r = .034, N = 504, p =
.448. For Rhythm, the observed data provided decisive evi-
dence favoring the null hypothesis, BF10 = .074. The interac-
tion between tone language and subtest was re-confirmed by
showing that the continuous measure was correlated with

Table 6 Correlations between music training and MET scores among
musically trained participants, reported separately for early and late
starters

Early starters (N = 77) Late starters (N = 248)

r p BF10 r p BF10

Melody .131 .348 .263 .389. < .001 > 100

Rhythm .199 .153 .463 .249 .001 19.7

Total .195 .162 .443 .367 < .001 > 100
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difference scores (i.e., Melody –Rhythm), r = .193,N = 504, p
< .001. The association was small yet decisive according to
the Bayes factor, BF10 > 100. In other words, as proficiency
with a tone language improved, Melody scores tended to in-
crease, such that the performance advantage for the Melody
subtest over the Rhythm subtest increased as well. These find-
ings did not change when participants from Swaminathan
et al. (2018) were excluded.

Multiple regression analyses

In the final set of analyses, we used multiple regression to
model MET scores as a function of six variables, each of
which had significant simple associations with MET scores:
music training, Digit Span Forward, Digit Span Backward,
Raven’s test, tone-language proficiency (continuous variable),
and SES. As noted in the introduction, we had specific hy-
potheses about music training, Digit Span Forward, and tone-
language proficiency, whereas Digit Span Backward and
Raven’s test controlled for individual differences in nonmusi-
cal ability. A Bayesian counterpart to multiple regression con-
sidered the same six-predictor model by removing each pre-
dictor from the model one at a time to determine whether the
observed data were better explained when the predictor was
included. The results are provided in Table 8.

The overall model was significant for Melody, Rhythm,
and Total scores, but the independent contribution of the in-
dividual predictors varied. Melody and Total scores were best
predicted by music training, Digit Span Forward, and tone-
language proficiency, and the Bayesian analyses provided de-
cisive support for the inclusion of each variable in the model.
Rhythm scores were best predicted by music training, Digit
Span Forward, and Digit Span Backward, with music training
and Digit Span Forward making decisive contributions, and
Digit Span Backward making a strong contribution.

Discussion

We used data from a large sample of Canadian undergraduates
to compile norms for performance on the MET.We also com-
pared the Melody and Rhythm subtests, and we identified
individual-difference variables that predicted performance.
The similarity between the Melody and Rhythm subtests in
terms of mean levels of performance confirmed that re-
searchers can make direct and meaningful comparisons be-
tween subtests. Whereas some individuals will perform simi-
larly on both subtests, others will perform better on one sub-
test or the other. Researchers can also use our norms to deter-
mine how well participants score in relation to our sample.
Scores were close to normally distributed for the Total mea-
sure and for the Melody and Rhythm subtests, with no evi-
dence of floor or ceiling effects. The one departure from nor-
mality was kurtosis.

Associations between MET scores and demographic vari-
ables—age, gender, SES—were non-existent or weak. Age
had a very restricted range in our sample, however, so the null
effect should be taken with a grain of salt. The lack of an
association with gender is consistent with current perspectives
that the role of women in the history of Western music has
taken a backseat to men because of social and cultural reasons,
and not because of any gender differences in musical ability
(Lumsden, 2010; Wentlent, 2016). Finally, a very weak asso-
ciation with SES was noted, a common finding for many tests
of cognitive abilities.

As in previous research with the MET (Wallentin et al.,
2010a), music training was associated positively and robustly
with test performance, as it has been with other objective
measures of musical abilities (Fujii & Schlaug, 2013; Law &
Zentner, 2012; Ullén et al., 2014). This association provided
evidence of criterion validity for the MET. Nevertheless, the
stronger association for Melody than for Rhythm, at least with

Table 7 Correlations, p values, and Bayes factors (BF10) for associations between MET scores and measures of general cognitive ability

Melody Rhythm Total Melody vs. Rhythm

Digit Span Forward r .258 .311 .327 z –1.08

p < .001 < .001 < .001 p .282

BF10 > 100 > 100 > 100

Digit Span Backward r .296 .353 .372 z –1.18

p < .001 .001 < .001 p .240

BF10 > 100 > 100 > 100

Raven’s test r .168 .217 .222 z –1.06

p < .001 < .001 < .001 p .290

BF10 36.8 > 100 > 100

The rightmost column provides tests of whether associations differ for the Melody and Rhythm subtests

Note: N = 381 for digit span forward and digit span backward. N = 456 for Raven’s test
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private music lessons, is difficult to explain. One possibility is
that it stems from the fact that the chromatic scale, fromwhich
the Melody stimuli were constructed, is not a universal char-
acteristic of musical systems. Neither is the use of pitch-based
sonorities, as in African drummingmusic (Jones, 1959). Thus,
the skills required to perform well on the Melody subtest may
be inherently more cultural (or learned) than those required to
perform well on the Rhythm subtest, and therefore more in-
fluenced by the learning acquired through formal music les-
sons. Another possibility is that the pedagogical style used in
private and school lessons for teaching music in Canada em-
phasizes melody over rhythm skills, except when individuals
specifically seek training in percussion.

Although associations between musical expertise and mu-
sic training were strong, age-of-onset of music training was
almost completely independent of performance on the MET
when duration-of-training was held constant. Bayesian statis-
tics suggested, moreover, that sample size was unlikely to be
implicated because evidence in favor of the null hypothesis
was substantial, and associations between music training and
MET scores were actually significant for late but not for early
starters. These findings were unexpected and inconsistent with
theory and data reported by other researchers (e.g., Bailey &
Penhune, 2012; Penhune, 2011, 2019; Steele et al., 2013;
Watanabe et al., 2007). Sensitive periods are evident for other
aspects of musical behavior (for review see Trainor, 2005), as
they are for language. For example, in the language domain, it
is well known that earlier exposure to a second language pre-
dicts fluency (Abrahamsson, 2012) and native-like pronunci-
ation (Flege & Fletcher, 1992; Flege, Yeni-Komshian, & Liu,
1999). In the music domain, deprivation studies with animals
suggest that exposure to harmonically rich, temporally pat-
terned tones early in life is essential for the proper formation
of tonotopic maps and brain circuits for pitch processing
(Chang & Merzenich, 2003). Among humans, a younger

age of onset is also predictive of acquiring absolute pitch, even
though most individuals who begin taking music lessons at an
early age do not have absolute pitch (Deutsch, 2013).

The apparent discrepancy between earlier findings and ours
may be due to differences in sampling. Previous research on
music training and sensitive periods (in samples of individuals
without absolute pitch) has tended to focus on highly skilled
musicians. In these samples, early onset of training predicted
differences in brain structure (Baer et al., 2015; Bailey et al.,
2014; Steele et al., 2013) and rhythm perception and/or produc-
tion (Bailey et al., 2014; Bailey & Penhune, 2013; Matthews,
Thibodeau, Gunther, & Penhune, 2016; Watanabe et al., 2007).
Perhaps early onset predicts musical ability only among musi-
cians who are more skilled than our participants, even those who
had 10 or more years of private lessons. Another possibility is
that early onset may predict some musical abilities (e.g., rhythm
synchronization) but not others (e.g., performance on the MET).
A third possibility is that our music-background questionnaire
did not give us reliable responses, in contrast to the Musical
Experience Questionnaire (Bailey & Penhune, 2010), which
was used in the samples of highly skilled musicians.
Nevertheless, if onset of training were indeed important but
measured inadequately, it seems odd that duration ofmusic train-
ing was a robust predictor of musical ability in our large sample,
and therefore measured adequately.

Positive correlations between performance on the MET
and nonmusical cognitive abilities were in line with predic-
tions. The small but decisive associations were also consistent
with Carroll’s (1993) three-strata model of intellect, which
posits that all abilities are correlated with general ability (g,
at stratum III) and with each other. Although performance on
the MET was correlated with general cognitive skills as mea-
sured by Raven’s test, Digit Span Forward, and Digit Span
Backward, when all three variables were considered simulta-
neously, Digit Span Forward was the strongest predictor of

Table 8 Summary of multiple-regression analyses predicting MET scores (N = 363)

Melody Rhythm Total

β p BF10 β p BF10 β p BF10

Music training .331 < .001 > 100 .173 < .001 75.4 .293 < .001 > 100

Digit span forward .210 < .001 > 100 .219 < .001 > 100 .246 < .001 > 100

Digit span backward .084 .126 .532 .166 .004 10.1 .141 .009 4.47

Raven’s test .037 .439 .227 .098 .055 1.17 .076 .110 .567

Tone-language facility .258 < .001 > 100 .081 .109 .682 .199 < .001 > 100

SES .085 .065 .889 .078 .108 .685 .093 .039 1.30

R2 .292 < .001 .210 < .001 .314 < .001

Adjusted R2 .280 < .001 .197 < .001 .302 < .001

F(6, 353) 24.241 < .001 15.665 < .001 26.938 < .001

Bayes factors from Bayesian linear regression are included.
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MET scores. This result makes sense given the structure of the
MET trials, which required the participant to hold the standard
sequence in mind while determining whether it was identical
to the comparison sequence that followed. A separate, inde-
pendent contribution of Digit Span Backward was associated
with Rhythm subtest performance. Perhaps the wide variation
in onset-to-onset durations on test trials required participants
to compare different sections of the stimuli in succession,
increasing task demands to make them similar to those of
Digit Span Backward.

Our finding of a positive association between tone-
language experience and melody processing is consistent with
earlier findings from behavioral (Bidelman et al., 2013; Zhang
et al., 2020) and neuronal (Bidelman et al., 2011; Krishnan,
Gandour, Bidelman, & Swaminathan, 2009) studies, and
lends itself to a relatively straightforward explanation. When
learning a tone language, individuals must attend to differ-
ences in pitch and to changes in pitch, which signal a word’s
semantic meaning. This learning, which begins in infancy
(Mattock & Burnham, 2006; Mattock, Molnar, Polka, &
Burnham, 2008; Tsao, 2017), appears to enhance the repre-
sentation and discrimination of pitch in non-linguistic con-
texts. Although our data are correlational, the reverse causal
direction is impossible because of the developmental timeline
of native language acquisition. It remains possible, however,
that a third, unmeasured variable caused individuals to (1)
speak a tone language at home, and (2) be proficient on tests
of melody perception and discrimination.

In sum, our results confirm the utility of the MET as an
objective index of musical ability. Good performance on the
MET is predicted by amount of music training and by indi-
vidual differences in immediate recall for nonmusical auditory
stimuli. Although the Melody and Rhythm subtests are equal-
ly difficult, their correlates differ. Scores on the Melody sub-
test are better explained by private music training compared to
those on the Rhythm subtest. Higher Melody scores are also
evident among participants who speak a tone language.

Research interest in musical ability measured objectively has
grown over recent years, with several reports documenting asso-
ciations in both adulthood and childhood. For example, in adult-
hood, researchers have reported links between musical ability
and speech perception (Mankel, Barber, & Bidelman, 2020;
Mankel & Bidelman, 2018; Swaminathan & Schellenberg,
2017), second-language proficiency (Bhatara, Yeung, & Nazzi,
2015; Roncaglia-Denissen, Roor, Chen, & Sadakata, 2016;
Roncaglia-Denissen, Schmidt-Kassow, Heine, Vuust, & Kotz,
2013; Slevc & Miyake, 2006), executive functions (Slevc,
Davey, Buschkuehl, & Jaeggi, 2016), short-term memory
(Hansen et al., 2013), recognition of vocal emotions (Correia
et al., 2020), intelligence (Swaminathan et al., 2017), reading
comprehension (Swaminathan et al., 2018), sensitivity to speech
rhythms (Magne, Jordan, & Gordon, 2016), faking a foreign
accent (Coumel, Christiner, & Reiterer, 2019), personality

(Swaminathan & Schellenberg, 2018; Thomas, Silvia,
Nusbaum, Beaty, & Hodges, 2016), and working in a creative
occupation (Theorell, Madison, & Ullén, 2019). In childhood,
links have been reported between musical ability and grammat-
ical ability (Gordon et al., 2015; Lee, Ahn, Holt, & Schellenberg,
2020; Swaminathan & Schellenberg, 2019), phonological pro-
cessing (Anvari, Trainor, Woodside, & Levy, 2002), and speech
perception (Swaminathan & Schellenberg, 2019). The correlates
of musical ability identified here need to be considered carefully
when: (1) associations betweenmusical ability and other abilities
are reported, (2) attempts are made tomanipulate musical ability,
and (3) the goal is to make causal conclusions about how such
ability develops.
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Appendix

Table 9 Raw MET Melody scores converted to percentile, Z-, and T-
scores

Raw Score Percentile Z-score T-score

49 99 136 74

48 99 133 72

47 98 131 70

46 97 128 69

45 95 125 67

44 93 122 65

43 91 119 63

42 88 117 61

41 84 114 59

40 80 111 57

39 74 108 56

38 67 105 54

37 60 103 52

36 54 100 50

35 48 97 48

34 40 94 46

33 32 91 44

32 26 89 42

31 21 86 41

30 15 83 39

29 11 80 37

28 8 77 35

27 5 75 33

26 3 72 31

25 2 69 29

24 1 66 28

23 < 1 64 26

22 < 1 61 24
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Table 11 Raw MET Total scores converted to percentile, Z-, and T-
scores

Raw Score Percentile Z-score T-score

94 99 136 74

93 99 135 73

92 99 133 72

91 98 131 71

90 98 129 7-

89 98 127 69

88 97 126 67

87 96 124 66

86 94 123 65

85 93 121 64

84 91 119 63

83 87 118 62

82 85 116 61

81 82 114 60

80 79 113 58

79 77 111 57

78 72 109 56

77 69 108 55

76 67 106 54

75 64 104 53

74 60 102 52

73 56 101 51

72 52 99 49

71 47 97 48

70 43 96 47

69 38 94 46

68 33 92 45

67 28 91 44

66 25 89 43

65 22 87 42

64 18 86 40

63 16 84 39

62 13 82 38

61 10 81 37

60 9 79 36

59 7 77 35

58 7 75 34

57 5 74 33

56 4 72 31

55 2 70 30

54 2 69 29

53 1 67 28

52 < 1 65 27

51 < 1 64 26

50 < 1 62 25

Table 10 RawMET Rhythm scores converted to percentile, Z-, and T-
scores

Raw Score Percentile Z-score T-score

47 99 132 71

46 99 129 69

45 98 126 67

44 95 123 65

43 91 120 63

42 88 117 61

41 83 114 59

40 78 111 57

39 71 108 55

38 63 105 53

37 56 102 51

36 50 99 49

35 42 96 47

34 36 92 45

33 28 89 43

32 22 86 41

31 16 83 39

30 11 80 37

29 8 77 35

28 6 74 33

27 4 71 31

26 3 68 29

25 1 65 27

24 < 1 62 25

23 < 1 59 23

22 < 1 56 21

2021Behav Res (2021) 53:2007–2024



References

Abrahamsson, N. (2012). Age of onset and nativelike L2 ultimate attain-
ment of morphosyntactic and phonetic intuition. Studies in Second
Language Acquisition, 34(2), 187–214. https://doi.org/10.1017/
S0272263112000022

Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002).
Relations among musical skills, phonological processing, and early
reading ability in preschool children. Journal of Experimental Child
Psychology, 83(2), 111–130. https://doi.org/10.1016/S0022-
0965(02)00124-8

Baer, L. H., Park, M. T., Bailey, J. A., Chakravarty, M. M., Li, K. Z. H.,
& Penhune, V. B. (2015). Regional cerebellar volumes are related to
early musical training and finger tapping performance.NeuroImage,
105, 130–139. https://doi.org/10.1016/j.neuroimage.2014.12.076

Bailey, J. A., & Penhune, V. B. (2010). Rhythm synchronization perfor-
mance and auditory working memory in early- and late-trained mu-
sicians. Experimental Brain Research, 204, 91–101. https://doi.org/
10.1007/s00221-010-2299-y

Bailey, J., & Penhune, V. B. (2012). A sensitive period for musical train-
ing: Contributions of age of onset and cognitive abilities. Annals of
the New York Academy of Sciences, 1252, 163–170. https://doi.org/
10.1111/j.1749-6632.2011.06434.x

Bailey, J. A., & Penhune, V. B. (2013). The relationship between the age
of onset of musical training and rhythm synchronization perfor-
mance: Validation of sensitive period effects. Frontiers in
Auditory Cognitive Neuroscience, 7:227. https://doi.org/10.3389/
fnins.2013.00227

Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early musical
training: Effects on auditory motor integration and greymatter struc-
ture in ventral premotor cortex. Journal of Cognitive Neuroscience,
26(4), 755–767. https://doi.org/10.1162/jocn_a_00527

Bentley, A. (1966).Musical ability in children and its measurement. New
York: October House.

Bhatara, A., Yeung, H. H., &Nazzi, T. (2015). Foreign language learning
in French speakers is associated with rhythm perception, but not
with melody perception. Journal of Experimental Psychology:
Human Perception and Performance, 41(2), 277–282. https://doi.
org/10.1037/a0038736

Bidelman, G.M., & Chung,W.-L. (2015). Tone-language speakers show
hemispheric specialization and differential cortical processing of
contour and interval cues for pitch. Neuroscience, 305, 384–392.
https://doi.org/10.1016/j.neuroscience.2015.08.010

Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011). Cross-domain
effects of music and language experience on the representation of
pitch in the human auditory brainstem. Journal of Cognitive
Neuroscience, 23(2), 424–434. https://doi.org/10.1162/jocn.2009.
21362

Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language
speakers and musicians share enhanced perceptual and cognitive
abilities for musical pitch: Evidence for bidirectionality between
the domains of language and music. PloS ONE, 8(4): e60676.
https://doi.org/10.1371/journal.pone.0060676

Bidelman, G. M., & Lee, C.-C. (2015). Effects of language experience
and stimulus context on the neural organization and categorical per-
ception of speech. NeuroImage, 120,191–200. https://doi.org/10.
1016/j.neuroimage.2015.06.087

Bors, D. A., & Stokes, T. L. (1998). Raven’s Advanced Progressive
Matrices: Norms for first-year university students and the develop-
ment of a short form. Educational and Psychological Measurement,
58(3), 382–398. https://doi.org/10.1177/0013164498058003002

Butkovic, A., Ullén, F., &Mosing,M. A. (2015). Personality related traits
as predictors of music practice: Underlying environmental and ge-
netic influences. Personality and Individual Differences, 74, 133–
138. https://doi.org/10.1016/j.paid.2014.10.006

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-
analytic studies. Cambridge, UK: Cambridge University Press.

Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards
auditory cortical development. Science, 300(5618), 498–502.
https://doi.org/10.1126/science.1082163

Conway, A. R. A., Kane, M. J., Bunting, M.F., Hambrick, D. Z.,
Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks:
A methodological review and user’s guide. Psychonomic Bulletin &
Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772

Correia, A. I., Castro, S. L., MacGregor, C., Müllensiefen, D.,
Schellenberg, E. G., & Lima, C. F. (2020). Enhanced recognition
of vocal emotions in individuals with naturally good musical abili-
ties. Emotion. Advance online publication. https://doi.org/10.1037/
emo0000770

Coumel, M., Christiner, M., & Reiterer, S. M. (2019) Second language
accent faking ability depends on musical abilities, not on working
memory. Frontiers in Psychology, 10:257. https://doi.org/10.3389/
fpsyg.2019.00257

Deutsch, D. (2013). Absolute pitch. In D. Deutsch (Ed.), The psychology
of music (3rd ed., pp. 141–182). San Diego: Academic Press.

DiLalla, L. (2017). Behavioral genetics. In Oxford Bibliographies
(September, 2017 ed.). Oxford, UK: Oxford University Press.
https://www.oxfordbibliographies.com/view/document/obo-
9780199828340/obo-9780199828340-0010.xml

Ericsson, K. A. (2006). The influence of experience and deliberate prac-
tice on the development of superior expert performance. In K. A.
Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The
Cambridge handbook of expertise and expert performance (pp.
683–703). Cambridge, UK: Cambridge University Press. https://
doi.org/10.1017/CBO9780511816796.038

Ericsson, K. A., Rampe, R. T., & Tesch-Römer, C. (1993). The role of
deliberate in the acquisition of expert performance. Psychological
Review, 100(3), 363–406. https://doi.org/10.1037/0033-295X.100.
3.363

Flege, J., & Fletcher, K. (1992). Talker and listener effects on the percep-
tion of degree of foreign accent. Journal of the Acoustical Society of
America, 91(1), 370–389. https://doi.org/10.1121/1.402780

Flege, J., Yeni-Komshian, G., & Liu, S. (1999). Age constraints on sec-
ond language learning. Journal of Memory and Language, 41(1),
78–104. https://doi.org/10.1006/jmla.1999.2638

Fujii, S., & Schlaug, G. (2013) The Harvard Beat Assessment Test (H-
BAT): A battery for assessing beat perception and production and
their dissociation. Frontiers in Human Neuroscience, 7:771. https://
doi.org/10.3389/fnhum.2013.00771

Gordon, E. (1965).Musical aptitude profile: Manual. Boston: Houghton
Mifflin.

Gordon, E. E. (1979). Primary measures of music audiation (K-Grade 3).
Chicago: GIA Publications.

Gordon, E. E. (1982). Intermediate measures of music audiation (Grade
1–6). Chicago: GIA Publications.

Gordon, E. E. (1989). Advanced measures of music audiation (Grade 7–
Adult). Chicago: GIA Publications.

Gordon, R. L., Shivers, C. M., Wieland, E. A., Kotz, S. A., Yoder, P. J.,
McAuley, J. D. (2015). Musical rhythm discrimination explains
individual differences in grammar skil ls in children.
Developmental Science, 18(4), 635–644. https://doi.org/10.1111/
desc.12230

Graham, G. (2019). Behaviorism. In E. N. Zalta (Ed.), The Stanford
encyclopedia of philosophy (Summer 2019 ed.). Stanford
University, https://plato.stanford.edu/archives/spr2019/entries/
behaviorism

Hambrick, D. Z., Macnamara, B. N., Campitelli, G., Ullén, F., &Mosing,
M. A. (2016). Beyond born versus made: A new look at expertise.
Psychology of Learning and Motivation, 64, 1–55. https://doi.org/
10.1016/bs.plm.2015.09.001

2022 Behav Res (2021) 53:2007–2024

https://doi.org/10.1017/S0272263112000022
https://doi.org/10.1017/S0272263112000022
https://doi.org/10.1016/S0022-0965(02)00124-8
https://doi.org/10.1016/S0022-0965(02)00124-8
https://doi.org/10.1016/j.neuroimage.2014.12.076
https://doi.org/10.1007/s00221-010-2299-y
https://doi.org/10.1007/s00221-010-2299-y
https://doi.org/10.1111/j.1749-6632.2011.06434.x
https://doi.org/10.1111/j.1749-6632.2011.06434.x
https://doi.org/10.3389/fnins.2013.00227
https://doi.org/10.3389/fnins.2013.00227
https://doi.org/10.1162/jocn_a_00527
https://doi.org/10.1037/a0038736
https://doi.org/10.1037/a0038736
https://doi.org/10.1016/j.neuroscience.2015.08.010
https://doi.org/10.1162/jocn.2009.21362
https://doi.org/10.1162/jocn.2009.21362
https://doi.org/10.1371/journal.pone.0060676
https://doi.org/10.1016/j.neuroimage.2015.06.087
https://doi.org/10.1016/j.neuroimage.2015.06.087
https://doi.org/10.1177/0013164498058003002
https://doi.org/10.1016/j.paid.2014.10.006
https://doi.org/10.1126/science.1082163
https://doi.org/10.3758/BF03196772
https://doi.org/10.1037/emo0000770
https://doi.org/10.1037/emo0000770
https://doi.org/10.3389/fpsyg.2019.00257
https://doi.org/10.3389/fpsyg.2019.00257
https://www.oxfordbibliographies.com/view/document/obo-9780199828340/obo-9780199828340-0010.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199828340/obo-9780199828340-0010.xml
https://doi.org/10.1017/CBO9780511816796.038
https://doi.org/10.1017/CBO9780511816796.038
https://doi.org/10.1037/0033-295X.100.3.363
https://doi.org/10.1037/0033-295X.100.3.363
https://doi.org/10.1121/1.402780
https://doi.org/10.1006/jmla.1999.2638
https://doi.org/10.3389/fnhum.2013.00771
https://doi.org/10.3389/fnhum.2013.00771
https://doi.org/10.1111/desc.12230
https://doi.org/10.1111/desc.12230
https://plato.stanford.edu/archives/spr2019/entries/behaviorism
https://plato.stanford.edu/archives/spr2019/entries/behaviorism
https://doi.org/10.1016/bs.plm.2015.09.001
https://doi.org/10.1016/bs.plm.2015.09.001


Hambrick, D. Z., & Tucker-Drob, E. (2015). The genetics of music ac-
complishment: Evidence for gene-environment correlation and in-
teraction. Psychonomic Bulletin & Review, 22, 112–120. https://doi.
org/10.3758/s13423-014-0671-9.

Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and
musical competence of musicians and non-musicians.Psychology of
Music, 41(6), 779–793. https://doi.org/10.1177/0305735612452186

Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework
for brain plasticity: Behavior, function, and structure.Neuron, 76(3),
486–502. https://doi.org/10.1016/j.neuron.2012.10.011

Howe, M. J. A., Davidson, J. W., & Sloboda, J. A. (1998). Innate talents:
Reality or myth? Behavioral and Brain Sciences, 21(3), 399–407.
https://doi.org/10.1017/S0140525X9800123X

Hutka, S., Bidelman, G. M., & Moreno, S. (2015). Pitch expertise is not
created equal: Cross-domain effects of music and tone language
experience on neural and behavioural discrimination of speech and
music. Neuropsychologia, 71, 52–63. https://doi.org/10.1016/j.
neuropsychologia.2015.03.019

Jarosz, A., & Wiley, J. (2014). What are the odds? A practical guide to
computing and reporting Bayes factors. Journal of Problem Solving,
7(1), 2–9. https://doi.org/10.7771/1932-6246.1167

JASP Team (2019). JASP (Version 0.10.2) [Computer software].
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford

University Press.
Johnson, E., McGue, M., & Iacono, W. G. (2007). Socioeconomic status

and school grades: Placing their association in broader context in a
sample of biological and adoptive families. Intelligence, 35(6), 526–
541. https://doi.org/10.1016/j.intell.2006.09.006

Jones, A. M. (1959). Studies in African music. Oxford, UK: Oxford
University Press.

Krishnan, A., Gandour, J. T., Bidelman, G. M., & Swaminathan, J.
(2009). Experience-dependent neural representation of dynamic
pitch in the brainstem. NeuroReport, 20(4), 408–413. https://doi.
org/10.1097/WNR.0b013e3283263000

Law, L. N. C., & Zentner, M. (2012). Assessing musical abilities objec-
tively: Construction and validation of the Profile of Music
Perception Skills. PloS ONE, 7(12), e52508. https://doi.org/10.
1371/journal.pone.0052508

Lee, Y. S., Ahn, A., Holt, R. F., & Schellenberg, E. G. (2020). Rhythm
and syntax processing in school-age children. Developmental
Psychology, 56(9), 1632–1641. https://doi.org/10.1037/
dev0000969

Lumsden, R. (2010). Women’s leadership in Western music since 1800.
In K. O’Connor (Ed.),Gender and women’s leadership: A reference
handbook (pp. 917–925). Thousand Oaks, CA: Sage.

Macnamara, B. N., Hambrick, D. Z., & Oswald, F. L. (2014). Deliberate
practice and performance in music, games, sports, education, and
professions: A meta-analysis. Psychological Science, 25(8), 1608–
1618. https://doi.org/10.1177/0956797614535810

Macnamara, B. N., Moreau, D., & Hambrick, D. Z. (2016). The relation-
ship between deliberate practice and performance in sports: A meta-
analysis. Perspectives on Psychological Science, 11(3), 333–350.
https://doi.org/10.1177/1745691616635591

Magne, C., Jordan, D. K., Gordon, R. L. (2016) Speech rhythm sensitiv-
ity andmusical aptitude: ERPs and individual differences. Brain and
Language, 153–154, 13–19. https://doi.org/10.1016/j.bandl.2016.
01.001

Mankel, K., Barber, J., & Bidelman, G. M. (2020). Auditory categorical
processing for speech is modulated by inherent musical listening
skills. NeuroReport, 31, 162–166. https://doi.org/10.1097/WNR.
0000000000001369

Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather
than formal music training shape the neural encoding of speech.
Proceedings of the National Academy of Sciences of the United
States of America, 115(51), 13129–13134. https://doi.org/10.1073/
pnas.1811793115

Matthews, T. E., Thibodeau, J. N. L., Gunther, B. P., & Penhune, V. B.
(2016) The impact of instrument-specific musical training on
rhythm perception and production. Frontiers in Psychology, 7:69.
https://doi.org/10.3389/fpsyg.2016.00069

Mattock, K., & Burnham, D. (2006). Chinese and English infants’ tone
perception: Evidence for perceptual reorganization. Infancy, 10(3),
241–265. https://doi.org/10.1207/s15327078in1003_3

Mattock, K., Molnar, M., Polka, L., & Burnham, D. (2008). The devel-
opmental course of lexical tone perception in the first year of life.
Cognition, 106(3), 1367–1381. https://doi.org/10.1016/j.cognition.
2007.07.002

Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate practice is necessary
but not sufficient to explain individual differences in piano sight-
reading skill: The role ofWMC. Psychological Science, 21(7), 914–
919. https://doi.org/10.1177/0956797610373933.

Mosing, M. A., Madison, G., Pedersen, N. L., Kuja-Halkola, R., & Ullén,
F. (2014). Practice does not make perfect: No causal effect of music
practice on music ability. Psychological Science, 25(9), 1795–1803.
https://doi.org/10.1177/0956797614541990

Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016).
Investigating cognitive transfer within the framework of music prac-
tice: Genetic pleiotropy rather than causality. Developmental
Science, 19(3), 504–512. https://doi.org/10.1111/desc.12306

Mosing, M. A., & Ullén, F. (2018). Genetic influences on musical spe-
cialization: A twin study on choice of instrument and music genre.
Annals of the New York Academy of Sciences, 1423, 427–434.
https://doi.org/10.1111/nyas.13626

Müllensiefen, D., Gingras, B., Musil, J., Stewart, L. (2014). The musical-
ity of non-musicians: An index for assessing musical sophistication
in the general population. PloS ONE, 9(2), e89642. https://doi.org/
10.1037/t42817-000

Penhune, V. B. (2011). Sensitive periods in human development:
Evidence from musical training. Cortex, 47(9), 1126–1137. https://
doi.org/10.1016/j.cortex.2011.05.010

Penhune, V. B. (2019). Music training and brain structure: The causes
and consequences of training. In M. H. Thaut & D. A. Hodges
(Eds.), The Oxford handbook of music and the brain (pp. 419–
438). Oxford, UK: Oxford University Press. https://doi.org/10.
1093/oxfordhb/9780198804123.013.17

Penhune, V. B. (2020). A gene-maturation-environment model for un-
derstanding sensitive period effects in musical training. Current
Opinion in Behavioral Sciences, 36, 13–22. https://doi.org/10.
1016/j.cobeha.2020.05.011

Penhune, V., & de Villers-Sidani, E. (2014). Time for new thinking about
sensitive periods. Frontiers in Systems Neuroscience. 8:55. https://
doi.org/10.3389/fnsys.2014.00055

Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical
disorders. Annals of the New York Academy of Sciences, 999, 58–
75. https://doi.org/10.1196/annals.1284.006

Piro, J. M., & Oritz, C. (2009). The effect of piano lessons on the vocab-
ulary and verbal sequencing skills of primary grade students.
Psychology of Music, 37(3), 325–347. https://doi.org/10.1177/
0305735608097248

Raven, J. C. (1965). Advanced Progressive Matrices, Sets I and II.
Toronto: Psychological Corporation.

Roncaglia-Denissen, M. P., Roor, D. A., Chen, A., & Sadakata, M.
(2016) The enhanced musical rhythmic perception in second lan-
guage learners. Frontiers in Human Neuroscience, 10:288. https://
doi.org/10.3389/fnhum.2016.00288

Roncaglia-Denissen, M.P., Schmidt-Kassow, M., Heine, A., Vuust, P., &
Kotz, S. A. (2013). Enhanced musical rhythmic perception in
Turkish early and late learners of German. Frontiers in
Psychology, 4:645. https://doi.org/10.3389/fpsyg.2013.00645

Schellenberg, E. G. (2006). Long-term positive associations between mu-
sic lessons and IQ. Journal of Educational Psychology, 98(2), 457–
468. https://doi.org/10.1037/0022-0663.98.2.457

2023Behav Res (2021) 53:2007–2024

https://doi.org/10.3758/s13423-014-0671-9
https://doi.org/10.3758/s13423-014-0671-9
https://doi.org/10.1177/0305735612452186
https://doi.org/10.1016/j.neuron.2012.10.011
https://doi.org/10.1017/S0140525X9800123X
https://doi.org/10.1016/j.neuropsychologia.2015.03.019
https://doi.org/10.1016/j.neuropsychologia.2015.03.019
https://doi.org/10.7771/1932-6246.1167
https://doi.org/10.1016/j.intell.2006.09.006
https://doi.org/10.1097/WNR.0b013e3283263000
https://doi.org/10.1097/WNR.0b013e3283263000
https://doi.org/10.1371/journal.pone.0052508
https://doi.org/10.1371/journal.pone.0052508
https://doi.org/10.1037/dev0000969
https://doi.org/10.1037/dev0000969
https://doi.org/10.1177/0956797614535810
https://doi.org/10.1177/1745691616635591
https://doi.org/10.1016/j.bandl.2016.01.001
https://doi.org/10.1016/j.bandl.2016.01.001
https://doi.org/10.1097/WNR.0000000000001369
https://doi.org/10.1097/WNR.0000000000001369
https://doi.org/10.1073/pnas.1811793115
https://doi.org/10.1073/pnas.1811793115
https://doi.org/10.3389/fpsyg.2016.00069
https://doi.org/10.1207/s15327078in1003_3
https://doi.org/10.1016/j.cognition.2007.07.002
https://doi.org/10.1016/j.cognition.2007.07.002
https://doi.org/10.1177/0956797610373933
https://doi.org/10.1177/0956797614541990
https://doi.org/10.1111/desc.12306
https://doi.org/10.1111/nyas.13626
https://doi.org/10.1037/t42817-000
https://doi.org/10.1037/t42817-000
https://doi.org/10.1016/j.cortex.2011.05.010
https://doi.org/10.1016/j.cortex.2011.05.010
https://doi.org/10.1093/oxfordhb/9780198804123.013.17
https://doi.org/10.1093/oxfordhb/9780198804123.013.17
https://doi.org/10.1016/j.cobeha.2020.05.011
https://doi.org/10.1016/j.cobeha.2020.05.011
https://doi.org/10.3389/fnsys.2014.00055
https://doi.org/10.3389/fnsys.2014.00055
https://doi.org/10.1196/annals.1284.006
https://doi.org/10.1177/0305735608097248
https://doi.org/10.1177/0305735608097248
https://doi.org/10.3389/fnhum.2016.00288
https://doi.org/10.3389/fnhum.2016.00288
https://doi.org/10.3389/fpsyg.2013.00645
https://doi.org/10.1037/0022-0663.98.2.457


Schellenberg, E. G. (2020). Music training, individual differences, and
plasticity. In M. S. C. Thomas, D. Mareschal, & I. Dumontheil
(Eds.), Educational neuroscience: Development across the lifespan
(pp. 413–439). New York: Routledge. https://doi.org/10.4324/
9781003016830

Seashore, C. (1919). The psychology of musical talent. New York, NY:
Holt.

Seashore, C. E., Saetveit, J. G., & Lewis, D. (1960). Seashore measures
of musical talent (rev. ed.). New York: Psychological Corporation.

Skinner, B. F. (1976). About behaviorism. New York: Random House.
Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. (2016).

Tuning the mind: Exploring the connections between musical ability
and executive functions. Cognition, 152, 199–211. https://doi.org/
10.1016/j.cognition.2016.03.017

Slevc, L. R., & Miyake, A. (2006). Individual differences in second-
language proficiency. Psychological Science, 17, 675–681. https://
doi.org/10.1111/j.1467-9280.2006.01765.x

Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early
musical training and white-matter plasticity in the corpus callosum:
Evidence for a sensitive period. Journal of Neuroscience, 33(3),
1282–1290. https://doi.org/10.1523/JNEUROSCI.3578-12.2013

Steele, C. J., & Zatorre, R. J. (2018). Practice makes plasticity. Nature
Neuroscience, 21, 1645–1650. https://doi.org/10.1038/s41593-018-
0280-4

Stevens, C. J., Keller, P. E., & Tyler, M. D. (2013). Tonal language
background and detecting pitch contour in spoken and musical
items. Psychology of Music, 41(1), 59–74. https://doi.org/10.1177/
0305735611415749

Swaminathan, S., & Schellenberg, E.G. (2017). Musical competence and
phoneme perception in a foreign language. Psychonomic Bulletin &
Review, 24(6), 1929–1934. https://doi.org/10.3758/s13423-017-
1244-5

Swaminathan, S., & Schellenberg, E.G. (2018). Musical competence is
predicted by music training, cognitive abilities, and personality.
Scientific Reports, 8, 9223. https://doi.org/10.1038/s41598-018-
27571-2

Swaminathan, S., & Schellenberg, E. G. (2019). Music training and cog-
nitive abilities: Associations, causes, and consequences. In M. H.
Thaut & D. A. Hodges (Eds.), The Oxford handbook of music and
the brain (pp. 645–670). Oxford, UK: Oxford University Press.
https://doi.org/10.1093/oxfordhb/9780198804123.013.26

Swaminathan, S., Schellenberg, E. G., & Khalil, S. (2017). Revisiting the
association between music lessons and intelligence: Training effects
or music aptitude? Intelligence, 62, 119–124. https://doi.org/10.
1016/j.intell.2017.03.005

Swaminathan, S., Schellenberg, E. G., & Venkatesan, K. (2018).
Explaining the association between music training and reading in
adults. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 44(6), 992–999. https://doi.org/10.1037/
xlm0000493

Thagard, P. (2019). Cognitive science. In E. N. Zalta (Ed.), The Stanford
encyclopedia of philosophy. Palo Alto: Metaphysics Research Lab,
Stanford University. https://plato.stanford.edu/archives/spr2019/
entries/cognitive-science

Theorell, T., Madison, G., & Ullén, F. (2019). Associations between
musical aptitude, alexithymia, and working in a creative occupation.
Psychology of Aesthetics, Creativity, and the Arts, 13(1), 49–57.
https://doi.org/10.1037/aca0000158

Thomas, K. S., Silvia, P. J., Nusbaum, E. C., Beaty, R. E., & Hodges, D.
A. (2016). Openness to experience and auditory discrimination

ability in music: An investment approach. Psychology of Music,
44(4), 792–801. https://doi.org/10.1177/0305735615592013

Trainor, L. J. (2005). Are there critical periods for musical development?
Developmental Psychobiology, 46(3), 262–278. https://doi.org/10.
1002/dev.20059

Tsao, F.-M. (2017). Perceptual improvement of lexical tone in infants:
Effects of tone language experience.Frontiers in Psychology, 8:558.
https://doi.org/10.3389/fpsyg.2017.00558

Ullén, F., Hambrick, D. Z., & Mosing, M. A. (2016). Rethinking exper-
tise: A multifactorial gene–environment interaction model of expert
performance. Psychological Bulletin, 142(4), 427–446. https://doi.
org/10.1037/bul0000033

Ullén, F., Mosing, M. A., Holm, L., Eriksson, H., & Madison, G. (2014).
Psychometric properties and heritability of a new online test for
musicality, the Swedish Musical Discrimination Test. Personality
and Individual Differences, 63, 87–93. https://doi.org/10.1016/j.
paid.2014.01.057

Vaquero, L., Rousseau, P.-N., Vozian, D., Klein, D., & Penhune, V.
(2020). What you learn & when you learn it: Impact of early bilin-
gual & music experience on the structural characteristics of
auditory-motor pathways. NeuroImage, 213, 116689. https://doi.
org/10.1016/j.neuroimage.2020.116689

Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P.
(2010a). The Musical Ear Test: A new reliable test for measuring
musical competence. Learning and Individual Differences, 20(3),
188–196. https://doi.org/10.1016/j.lindif.2010.02.004

Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P.
(2010b). Corrigendum to “The Musical Ear Test, a new reliable test
for measuring musical competence” [Learning and Individual
Differences Volume 20 (3) 188–196]. Learning and Individual
Differences, 20, 705. https://doi.org/10.1016/j.lindif.2010.10.001

Watanabe, D., Savion-Lemieux, T., & Penhune, V. B. (2007). The effect
of earlymusical training on adult motor performance: Evidence for a
sensitive period in motor learning. Experimental Brain Research,
176(2), 332–340. https://doi.org/10.1007/s00221-006-0619-z

Wentlent, A. (2016). The women of Western music: Hildegard to
Ella. Van Nuys, CA: Alfred Music.

Wing, H. D. (1962). A revision of the Wing Musical Aptitude Test.
Journal of Research in Music Education, 10(1), 39–46. https://doi.
org/10.2307/3343909

Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007).
Musical experience shapes human brainstem encoding of linguistic
pitch patterns. Nature Neuroscience, 10(4), 420–422. https://doi.
org/10.1038/nn1872

Zhang, L., Xie, S. Li, Y., Shu, H., & Zhang, Y. (2020). Perception of
musical melody and rhythm as influenced by native language expe-
rience. Journal of the Acoustical Society of America, 147(5), EL385-
EL390. https://doi.org/10.1121/10.0001179

Open Practices Statements

The data for the study are available in Supplementary Information.
The study was not preregistered.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2024 Behav Res (2021) 53:2007–2024

https://doi.org/10.4324/9781003016830
https://doi.org/10.4324/9781003016830
https://doi.org/10.1016/j.cognition.2016.03.017
https://doi.org/10.1016/j.cognition.2016.03.017
https://doi.org/10.1111/j.1467-9280.2006.01765.x
https://doi.org/10.1111/j.1467-9280.2006.01765.x
https://doi.org/10.1523/JNEUROSCI.3578-12.2013
https://doi.org/10.1038/s41593-018-0280-4
https://doi.org/10.1038/s41593-018-0280-4
https://doi.org/10.1177/0305735611415749
https://doi.org/10.1177/0305735611415749
https://doi.org/10.3758/s13423-017-1244-5
https://doi.org/10.3758/s13423-017-1244-5
https://doi.org/10.1038/s41598-018-27571-2
https://doi.org/10.1038/s41598-018-27571-2
https://doi.org/10.1093/oxfordhb/9780198804123.013.26
https://doi.org/10.1016/j.intell.2017.03.005
https://doi.org/10.1016/j.intell.2017.03.005
https://doi.org/10.1037/xlm0000493
https://doi.org/10.1037/xlm0000493
https://plato.stanford.edu/archives/spr2019/entries/cognitive-science
https://plato.stanford.edu/archives/spr2019/entries/cognitive-science
https://doi.org/10.1037/aca0000158
https://doi.org/10.1177/0305735615592013
https://doi.org/10.1002/dev.20059
https://doi.org/10.1002/dev.20059
https://doi.org/10.3389/fpsyg.2017.00558
https://doi.org/10.1037/bul0000033
https://doi.org/10.1037/bul0000033
https://doi.org/10.1016/j.paid.2014.01.057
https://doi.org/10.1016/j.paid.2014.01.057
https://doi.org/10.1016/j.neuroimage.2020.116689
https://doi.org/10.1016/j.neuroimage.2020.116689
https://doi.org/10.1016/j.lindif.2010.02.004
https://doi.org/10.1016/j.lindif.2010.10.001
https://doi.org/10.1007/s00221-006-0619-z
https://doi.org/10.2307/3343909
https://doi.org/10.2307/3343909
https://doi.org/10.1038/nn1872
https://doi.org/10.1038/nn1872
https://doi.org/10.1121/10.0001179

	The Musical Ear Test: Norms and correlates from a large sample of Canadian undergraduates
	Abstract
	Method
	Participants
	Measures and procedure

	Results
	Demographics
	Music training
	Duration of training
	Onset of training

	General cognitive ability
	Language background
	Multiple regression analyses

	Discussion
	Appendix
	References


